Evidence for an internal ribosome entry site within the 5' non-translated region of turnip mosaic potyvirus RNA.
نویسندگان
چکیده
The genomic RNA of potyviruses has a characteristic 5' non-translated region (5'NTR) to which a viral protein, VPg, is covalently attached. This suggests that the viral RNA lacks a conventional cap structure and thus its translation may not proceed in the same way as most cellular mRNAs. To investigate the role of the 5'NTR during translation, various derivatives of the turnip mosaic potyvirus (TuMV) leader were fused to the reporter gene beta-glucuronidase (GUS). These constructs were used to monitor the efficiency of translation in vitro in a rabbit reticulocyte lysate and in planta following microprojectile DNA delivery into tobacco cell suspensions. GUS transcripts fused with the TuMV 5'NTR, whether they were capped or not, were efficiently translated, whereas GUS transcripts without the viral leader needed to be capped for expression. When transcripts of the viral leader were supplied in excess over functional transcripts, translation was inhibited in a dose-dependent manner. Similarly, transcripts synthesized from the reverse complement of the 5'NTR inhibited translation to the same extent as the wild-type sequence, indicating that cap independence was not conferred by a specific sequence within the viral leader. A stable hairpin loop was placed in front or after the viral sequence. This hairpin loop normally prevented translation of control GUS transcripts but when the viral leader was positioned after it a significant level of GUS activity was measured, whether the transcripts were capped or not. On the other hand, when the hairpin loop was positioned after the viral leader, no GUS activity was measured. These results suggested that ribosomes bound to an internal site within the TuMV 5'NTR and then presumably scanned the sequence for the initiator AUG.
منابع مشابه
Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination.
Potyviruses have variable single-stranded RNA genomes and many show clear evidence of recombination. This report studied the distribution of recombination sites in the genomes of 92 isolates of the potyvirus Turnip mosaic virus (TuMV); 42 came from the international gene sequence databases and an additional 50 complete genomic sequences were generated from field samples collected in Europe and ...
متن کاملThe 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits.
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5' cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5' ends with substantial IRES activity but instead have 3' translational e...
متن کاملTranslation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism.
The human hepatitis C virus (HCV) contains a long 5' noncoding region (5' NCR). Computer-assisted and biochemical analyses suggest that there is a complex secondary structure in this region that is comparable to the secondary structures that are found in picornaviruses (E.A. Brown, H. Zhang, L.-H. Ping, and S.M. Lemon, Nucleic Acids Res. 20:5041-5045, 1992). Previous in vitro studies suggest th...
متن کاملAn unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein.
Potato leafroll polerovirus (PLRV) genomic RNA acts as a polycistronic mRNA for the production of proteins P0, P1, and P2 translated from the 5'-proximal half of the genome. Within the P1 coding region we identified a 5-kDa replication-associated protein 1 (Rap1) essential for viral multiplication. An internal ribosome entry site (IRES) with unusual structure and location was identified that re...
متن کاملProtonation of non-Watson-Crick base pairs and encapsidation of turnip yellow mosaic virus RNA.
The 5' UTR of turnip yellow mosaic virus RNA contains two conserved hairpins with internal loops consisting of C.C and C.A mismatches. In this article, evidence is presented indicating that the 5' proximal hairpin functions as an encapsidation initiation signal. Extensive mutagenesis studies on this hairpin and sequencing of virus progeny showed a clear preference for C.C and C.A mismatches wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 75 ( Pt 11) شماره
صفحات -
تاریخ انتشار 1994